Design
Arts
Medias

Designing with Abstractions: CSS and the
Case of Masonry Layouts

Julie Blanc

2025-06-30

Julie Blanc est titulaire d’un doctorat en ergonomie (psychologie) et design (Université Paris 8 /
Artec / EnsadLab, juin 2023). Sa these porte sur l'utilisation des technologies web pour la
publication imprimée et le développement des communautés de pratiques qui y sont associées.
Elle a fait partie de I'équipe qui développe paged.js et est spécialiste du CSS print (web-to-print).
Co-fondatrice de Studio Variable, elle travaille majoritairement des projets de publications mélant
code et design graphique. Elle est actuellement collaboratrice scientifique a la HEAD Genéve pour
le projet de recherche « WYSIWYG, An Investigation in the updake of graphic design software in
Switzerland and France, 1980 — today ».

Abstract

This article analyzes the debates around integrating the Masonry layout into CSS, focusing on the
process of abstraction and standardization. It examines CSS as both a design object and a formal
system, shaped through conceptual debates, technical implementation concerns, and interface-
centered considerations. The article concludes by highlighting how abstraction is collectively
negotiated to form a common foundation for the practice.

Keywords
CSS, Masonry layout, abstraction, standardization, design
Résumé

Cet article analyse les débats entourant l'intégration de *Masonry layout* dans CSS, en se
concentrant sur le processus d’abstraction et de standardisation. Il examine CSS a la fois comme
un objet de design et comme un systéeme formel, fagonné par des débats conceptuels, des
préoccupations liées a la mise en ceuvre technique et des considérations centrées sur I'interface
de code pour les designers et développeurs. L’article conclut en soulignant comment I'abstraction
est négociée collectivement afin de constituer une base commune pour la pratique.

Mots-clés

CSS, Masonry layout, abstraction, standardisation, design

Introduction

For some years now, graphic design has had a lot to do with code. Since the appearance of the
web, Cascading Style Sheets (CSS) have become central to shaping visual experiences online.
Yet, unlike traditional desktop publishing tools often based on direct manipulation metaphors and
WYSIWYG (What You See Is What You Get) interfaces, CSS is fundamentally a language, i.e., a
formal system requiring designers to engage with abstraction and logical rules. As American UX-
designer A. J. Kandy writes (with great clarity):

Still, today, the only way to really design for the web, on the web, with precise control,
is via markup languages and programming code. Thinking like the machine, to get the
machine to do what you want'.

The layout system in CSS is one of the most challenging and emblematic parts of this logic,
demanding a translation of visual intent into declarative rules. This article explores these dynamics
through a specific case study: the recent and intensive debates surrounding the integration of
Masonry layout — a type of grid layout — into the CSS standard. This specific standardization
effort provides a rich case where the challenges of abstraction and the socio-technical processes

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 2/21

of standardization converge.

Analyzing this case serves a double purpose. First, it allows us to understand CSS itself as a
design object, shaped through historical, technical, and practical choices. Second, it brings into
focus the fundamental process of abstracting visual layout into a formal language. We hope to
reveal how such abstractions are negotiated and solidified at a collective level, shaped within and
for the field of graphic web design.

This approach echoes the idea that coding is not merely a medium for design, but a space of
design itself. As Katherine N. Hayles and later Adrian Mackenzie — drawing on Judith Butler’s
theory of performativity — suggest, code is performative in a strong sense: it brings into being what
it describes. The abstraction here is not an intermediary tool but the very substance of design. The
code is the designed object, and the act of coding is an act of shaping material.

To develop this argument, the article proceeds as follows. We first delve into the concept of
abstraction, in computer science and graphic design. Following this conceptual part, we provide a
brief history of CSS layout to contextualize the specific challenges addressed by modern layout
methods. We then outline the socio-technical processes of standardization within the World Wide
Web Consortium (W3C), detailing the methodology used to analyze the Masonry layout debates.
The core of the paper presents an in-depth analysis of the Masonry layout case study, tracing its
origins and dissecting the differents arguments deploy by differents actors (conceptual debates,
technical implementation concerns, and interface-centered considerations). Finally, we conclude
by synthesizing these findings to underscore how CSS functions as a designed object itself and
how abstraction is collectively negotiated to form a common foundation for the practice.

Abstraction in (Graphic) Design and
Computation

Since our aim is to explore abstraction within the framework of CSS, it is relevant to define this
concept in two fields closely connected to it: computer science and graphic design.

In computer science, abstraction is a central and fundamental concept, often considered to be the
most important mental tool for computer scientists®. It refers to the ability to conceptualize systems
by omitting non-essential details and focusing on relevant structural features. This allows the
designer or programmer’ to work across levels of detail —from general behavior to implementation
specifics — and to construct reusable patterns that encapsulate common solutions.

Fundamentally, abstraction is the process of focusing on general concepts or the “big
picture™—seeing the forest, not just the individual trees. (...) For example, simplifying a
problem by overlooking non-crucial details in its description helps focus on the
computational essence of the problem. Ignoring details can also be expressed as
generalization or as distinguishing between “what” and “how”. Generalization involves
extracting common characteristics and essence from multiple instances while setting
aside their distinguishing details®.

Concretely, it allows developers to manage complexity by working with simplified models, such as
data types, functions, or components, without needing to understand their internal implementation.

In design, abstraction is more ambiguous. We focus on graphic design for this paper. Abstraction
has traditionally operated through formal reduction — simplifying shapes and typographic forms,
generalizing color palettes or grid layouts.

This understanding of graphic design as visual abstraction emerged with the introduction of
phototypesetting into publishing processes. The graphic designer is the one who conceives the

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 3/21

layout of publications or the templates for visual communications. They conceived rule-based
designs, later transmitted to others involved in the graphical chain: phototypesetting operators,
“paste-up” people, and other graphic designers. In this sense, abstraction lies in the designer’s
ability to anticipate how layouts will be implemented by others down the production line.

| — s | -

Figure. Example of grid by Josef Muller-Brockmann in his book Grid systems in graphic design
(1981), pp. 124-125

However, the work of conceptualizing these layouts and templates was tactile and immediate,
taking shape through direct manipulation — cutting, pasting, tracing, typesetting. Even the most
conceptual gestures were ultimately rooted in the properties of physical tools and materials: grids
were defined in millimeters, typography in points®.

But as the tools of the graphic designer transitioned from analog to digital —from photocomposition
to desktop publishing — the nature of abstraction transformed in kind. What was once done
through immediate contact with matter now takes place through graphical interfaces that mediate
the design process.

These interfaces, while often borrowing visual metaphors from analog tools— “paintboxes,”
“toolboxes,” “cut” and “paste” — introduce a new distance between the designer and the form.
Reflection on form is no longer shaped by the hand but by interaction with screens, menus, and
layered compositions. The designer navigates a visual system where gestures are interpreted,
translated, and constrained by the logic of the interface itself. However, the toolbox of Desktop
Publishing softwares still represents an attempt at mapping designers’ traditions and existing
mental models — particularly the model of the printed page®.

The emergence of the web marked a pivotal inflection point. Where once the designer authored
fixed compositions — intended for specific paper dimensions and a well-defined amount of content
— they now deal with environments dependent on device, screen size, or user settings. The
design of a website will not appear in the same way in these different contexts. To author the
design, graphic designers may use CSS.

CSS, which stands for Cascading Style Sheets, is a domain-specific declarative language
designed for styling HTML documents on the Web'. It describes how colors, fonts, and layouts are
presented and allows web page presentation to be adapted to different devices, such as large and
small screens®. CSS was designed to allow web content to be presented in different contexts,
serving different user needs.

With CSS, the designer will have to describe generic rules for the behavior of elements, which will
be instantiated in a specific way for a given display (screen size, type of machine, user settings).
The designer, increasingly, writes instructions rather than directly shaping form. The rise of code

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 4/21

as a design tool introduces a new kind of abstraction — one that is not only rule-based but also
procedural, generative, and variable. This shift expands the idea of “designing the object” to
“designing the process by which the object emerges.” What was already true in some design
practices® is here deeply entangled with the technology. Writing code becomes a way of
modeling/shaping design, not just representing design.

This requires a new kind of thinking: not just about how things look, but about how they behave.
Writing CSS means constructing a formal system of constraints and relationships between
elements, allowing for variable instantiations rather than singular outcomes. That is, building a
system that fluidly adapts across a continuous range of screen sizes — from narrow viewports to
ultra-wide displays — rather than producing a single, fixed design for a predetermined format, like
a print poster. Designers specify desired outcomes (e.g., “center this block”, “make all titles blue”)
and the browser engine computes the final layout based on multiple contextual factors at render

time.

Writing CSS is effectively setting up a system of constraints. You don't tell the browser
where to put every single element on the page; you tell it how much space to put
between them and let it sort out where they belong. (...) There are too many variables
to consider. The point of CSS is to make it so you don’t have to worry about them all.
(...) This is the power of a declarative language .

Unlike imperative programming languages' that articulate step-by-step procedures (JavaScript, C,
or Python), CSS allows designers to define relationships, variables, and responsive patterns. With
CSS, designers avoid micromanaging layout and instead focus on higher-level structural intent —
specifying relationships like spacing, flow, or alignment while leaving the computation of layout to
the browser.

In this way, CSS crystallizes a broader transformation in design practice: from the production of
fixed surfaces to the scripting (“writing”) of dynamic spatial logic. To make it possible, CSS is a
language intentionally designed to apply visual and behavioral rules to a set of contextual
elements. This is where the logic of abstraction becomes most evident: CSS is built to generalize
— to extract common structural principles from diverse cases while setting aside specific detalils.
The definition of abstraction used in the field of computer science is applied here to a language
used specifically for graphic design. In what follows, we will examine how this logic shapes the
design of CSS itself, focusing on the domain of layout.

A Brief History of CSS Layout

Before moving forward, it's worth stepping back to trace the development of the web and the CSS
language.

The World Wide Web (W3 or the web) was designed as a device-independent platform. Tim
Berners-Lee, his inventor, described it as a universal space, accessible regardless of hardware,
software, language, or ability'.

With this in mind, the web required a language that was simple, readable, and accessible on any
platform. This is how Tim Berners-Lee, assisted by Robert Cailliau, a Belgian engineer and
computer scientist, came up with HyperText Markup Language (HTML), a markup language for
representing the structure of a web document using tags added between sentences or words to
indicate the role of the text. In order to display it on any terminal regardless of its graphic display
capacity'®, HTML is deliberately a very simple language, and above all, without any indication of
formatting or possibility of controlling its presentation (excluding any modification of fonts, colors, or
text size).

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 5/21

However, as soon as graphical browsers like Mosaic (1993) gained popularity, commercial interest
in the web brought about an explosion of aesthetic expectations. HTML, initially meant to express
semantic structure, was used for visual layout. Designers repurposed elements like <table>,
transparent images, or even images and Java applets to simulate visual effects'. This misuse,
although creative, blurred the line between content and presentation and made websites less
accessible, maintainable, and semantically meaningful'®. The influence of print-based graphic
design played a role in this confusion. Designers were accustomed to controlling every pixel and
page layout aspect, something that the web’s model of logical structure followed by visual
rendering made difficult to achieve'.

In 1994, in an attempt to redress the situation and return HTML to its origin as a language for
structured documents, Hakon Wium Lie and Bert Bos, both computer scientists, formulated a
proposal for Cascading HTML Style Sheets, abbreviated CSS.

With CSS, visual and stylistic rules could be managed independently of the HTML document’s
structure. This separation became a core architectural requirement of the Web'". In practice, it
enabled greater adaptability: style sheets could render the same content differently depending on
screen size, media type, or user preferences.

The possibilities for page layout have increased rapidly over the last thirty years. Since the
introduction of the concept of responsive design in 2010, a growing collection of CSS features
has emerged that makes it easier to design web pages with adaptive layouts.

The layout of a document means (...) the overall graphical structure of its elements
when they are displayed on the screen, as opposed to other stylistic information such
as fonts or colors. They are not completely separated, of course, because indenting or
coloring a text influences what the user perceives as the visual structure of a page. But
layout is usually situated at a higher abstraction level than those aforementioned
presentational aspects™.

Around 2010, two major layout improvements were added to CSS, making it possible to do away
with the obsolete technique of HTML tables and float-based positioning™. These new tools greatly
improved the design and flexibility of responsive web pages. First, Flexbox, a one-dimensional
layout model, allows items within a container to expand or contract in order to occupy available
space, organizing them along a row or column depending on the container’s properties. Second,
CSS Grid provides a two-dimensional layout system that structures content into rows and columns,
offering many features to simplify the development of complex page designs. A crucial feature
shared by these new layout systems is their ability to visually position elements (images, blocks,
paragraph, etc.) independently of the source order of the semantic part (i.e., the linear sequence
defined by the HTML markup).”

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 6/21

|
|
|
|
|
|
|
|
T
i

Flexbox Grid
one dimension two dimensions

Figure. Flexbox vs. Grid methods in CSS. Numbers show each method’s default flow direction.

With CSS Grid, web layout has come full circle, re-integrating principles familiar from traditional
graphic design. As noted by Ambrose and Harris®', layout is about the management of form and
space, enabling complex information to be structured in a visually navigable way. CSS Grid echoes
these principles, relying on horizontal and vertical axes, proportional areas, and spatial rhythm, just
as Swiss-style design grids did in the mid-20th century®.

César Fernandez-Acebal, who wrote a thesis that originated the CSS grid proposal®, explicitly
draws this connection: Grid in CSS is modeled on the classical theory of layout, enabling a high-
level abstraction of visual structure, independent of the logical document order.

Despite this evolution, Masonry layouts — a popular, Pinterest-style staggered grid — remain an
unsolved problem in native CSS. This layout requires items of unequal height to be arranged
without gaps, in a column-wise flowing pattern. Layout still remains one of the hardest aspects of
CSS*, not only because of its complexity but because it embodies a tension between specific
cases and generic thinking (abstraction). Current discussions on the implementation of Masonry
layouts provide us with a framework for exploring the design of the CSS language itself and the
question of layout abstraction in the context of the web.

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 7/21

Figure. Masonry layout, with default flow direction of elements.

Investigating Web Standards: Methodological
Approach to the W3C Debate

Our research combines a mixed-method approach, combining quantitative and qualitative
methods, to trace the evolution of the debate around the Masonry layout feature in CSS.

This new feature was discussed primarily on the public online spaces of the World Wide Web
Consortium (W3C), a global organization founded in 1994 by Tim Berners-Lee, the inventor of the
Web. The W3C’s mission is to ensure the long-term growth of the Web by creating open®,
consensus-based standards.

In information technology, standards enhance compatibility between different programs and
hardware, making interoperability essential for resource sharing and collaboration. For example,
the web relies on backward compatibility, meaning that nothing should break over time — a
website coded twenty years ago should still display correctly today (assuming it hasn’t been
removed from its server, which is another matter). This principle allows us to still access and enjoy
the first web page published in 1991, along with its source code. This longevity is possible because
HTML and CSS are standards built around the concept of progressive enhancement through
accumulation. Their specifications are published publicly, allowing them to be utilized by anyone in
the same way, including web browser manufacturers.

The W3C operates through a structure of working groups, task forces, and community groups.
Each working group focuses on a specific aspect of the web. The CSS Working Group (CSSWG)
is responsible for developing and maintaining the CSS specifications™. Participants in these groups
typically include engineers and designers employed by browser vendors (such as Google, Apple,
Mozilla, and Microsoft), independent experts, researchers, and other stakeholders from the web
community?’.

Since its third version, CSS has been divided into modules, which are families of properties
dedicated to a particular domain: text manipulation (CSS Text Module), colors (CSS Color
Module), grids (CSS Grid Layout Module), box models (CSS Box Model Module), etc. Each of
these modules evolves independently and is assigned a maturity level. They start out as working
drafts and evolve towards W3C Recommendation status as they stabilize.

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 8/21

To reconstruct the history of the Masonry layout proposal, we mapped the different public spaces
where discussions occurred, both within and outside of formal W3C processes. Internal W3C
communication channels include IRC logs (online chat), newsletters, GitHub repositories, and in-
person meetings such as TPAC (Technical Plenary and Advisory Committee). In parallel, external
spaces such as browser vendors’ blogs, personal blogs of CSS authors, social media platforms,
and other platforms (CodePen, css-tricks.com, smashingmagazine.com...) illustrate how individual
contributors extend and reflect on formal debates.

To systematically study the discussions, we employed a two-phase methodological approach,
combining automated data extraction with qualitative analysis. Our main source is GitHub, an
online collaborative developer platform, where the W3C systematically shares public
documentation, code, and some communication from the organization. CSS specifications are
precisely discussed as issues in a dedicated repository (https://github.com/w3c/csswg-drafts/).
These issues act as public and searchable threads that document technical debates and
community input over time.

Figure. Screenshot of issue #9041 on W3C CSSWG repository on GitHub

Using the GitHub APl and custom Bash and Python scripts, we extracted all issues labeled “css-
grid-3” (105 issues) and “masonry” (40 issues). Metadata such as issue titles, authors, creation
dates, comment counts, and cross-references to other discussions were systematically collected.
Our scripts and their results are published publicly on GitLab®. Particular attention was paid to the
activity of bots logging IRC discussions (“css-meeting-bot”, 9 comments), as they often reveal how
informal exchanges transition into formal proposals.

However, quantitative analysis rapidly showed its limitations. Metrics such as the number of
comments or contributors did not necessarily reflect the conceptual significance of a given
discussion. Consequently, a qualitative phase was necessary. We selected relevant issues for
close reading based on four main criteria: frequency of citation across other issues, number of
comments, density and diversity of engagement, and relevance to the broader conceptual debate
around abstraction and layout models. Five issues emerged as central to understanding the debate
surrounding the Masonry feature: #945 [css-grid] [css-flexbox] Pinterest/Masonry style layout
support, #4650 [css-grid] Masonry layout, #9041 Alternative masonry path forward, #10233 [css-
grid-3] Designer/developer feedback on masonry layout, #11243 Alternative masonry path forward.

Issue Title Date Opened by Number of Unique
number comments authors
[css-grid] [css-flexbox] Jan 16
945 Pinterest/Masonry style layout 5017 ’ rachelandrew 59 30
support
. Jan 6,
4650 [css-grid] Masonry layout 5020 MatsPalmgren 54 22
9041 Alternative masonry path forward ;glzg bfgeek 133 65
[css-grid-3] Designer/developer Apr19, . .
10233 feedback on masonry layout 2024 jensimmons 122 95
[css-grid-3] [masonry] Masonry Nov 19, .
11243 Syntax Debate 5024 fantasai 28 14

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 9/21

Exploring the Case of Masonry Layouts

The debates around the integration of Masonry layout into CSS offer a rich case study to
understand how CSS standards are designed. They reveal how abstraction in CSS is not only a
technical or aesthetic issue, but also the outcome of negotiations between different types of
arguments: conceptual, technical, interface-centered (CSS author-facing), and political.

Masonry layout refers to a visual organization pattern where items of varying heights are tightly
arranged along one axis (typically vertically) without creating gaps, much like stones fitted together
in a wall (hence the name). It's also sometimes called “waterfall layout”®, as a metaphor for how
content flows down the page like a waterfall. The origins of the Masonry layout pattern lie outside
of CSS. Initially popularized through the JavaScript library Masonry.js, developed by David
DeSandro, this layout became widespread in web design because it allows content of different
sizes to be displayed in a condensed form. Despite this, CSS did not provide a native mechanism
for creating Masonry layouts. Developers and designers still rely on JavaScript or complex
workaround techniques. Using JavaScript for layout often makes websites slower and creates
difficulties for accessibility. This is why a native CSS approach is preferred, as it generally performs
layout better, is easier to manage in the long term, and naturally adapts to different screen sizes.

Q Rechercher v

BAUHAUS | |
Figure. Screenshot of the Pinterest platform, the most famous Masonry layout on

Origins and Initial Proposals (Grid vs
standalone)

Although traces of discussions around Masonry and Pinterest-like layouts can be found in the W3C
www-style mailing list as early as 2013%, the first issue on the GitHub repository of the W3C that
mentions this layout is issue #945, opened on January 16, 2017 by Rachel Andrew
(@rachelandrew), an independent Web developer and writer at the time. In the first message,
Rachel Andrew highlights the web development community’s interest in native CSS support for
Masonry. The discussions in the issue occur mainly at a conceptual level, questioning whether
Masonry should integrate with some layout methods that already exist in CSS (we’ll come back to
this). Some web developers also present the solutions they were already using.

e web.

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 10/21

On January 6, 2020, Mats Palmgren (@MatsPalmgren), layout engineer at Mozilla (Firefox
browser vendor), opened a long issue called #4650 [css-grid] Masonry layout. He proposed to
extend CSS Grid to support Masonry layout “in one of the axes while doing normal grid layout in
the other”. Quickly, an implementation of this proposal was made available in Firefox Nightly, an
experimental version of the Firefox browser that includes the latest features and updates, primarily
intended for developers and early testers. Some coded demos were also designed by Jen
Simmons graphic designer and CSSWG member (also from the Firefox team at this time), to
compare different possible options (Masonry added to Grid, Multicolumn, and Flexbox)®".

Twenty days later, the CSSWG adopted this Masonry layout proposal and nominated Tab Atkins
Jr. (@tabatkins), Elika J. Etemad (@fantasai), and Jen Simmons (@jensimmons) as editors,
responsible for tracking issues, responding to feedback, editing the specifications, and driving
progress on this specific CSS module *. At the end of the year, they transformed the proposal into
a W3C Editor’s Draft called “CSS Grid Layout Module Level 3 [css-grid-3]"%, the very early stage of
the official design phase of a W3C specification.

This issue #4650 marked the formal entry of Masonry into more technical discussions. However,
conceptual discussions continued, tightening up on the question of whether Masonry should be
integrated directly into CSS Grid or developed as a standalone layout model with its own properties
and logic. Three years later, the discussion was revived with issue #9041, opened on July 7, 2023
by lan Kilpatrick (@bfgeek), Chromium Blink Engineer at Google, who proposed an alternative
Masonry path forward as a standalone layout model.

Analysing discussions across this multiple issues, we observe that the arguments in favor of one or
the other of these approaches focused on three main points: conceptual debates, technical
implementation concerns, and interface-centered considerations (CSS author-facing).

Conceptual Debates

At a conceptual level, the question was whether Masonry should be considered an extension of
other existing CSS layout models (like Multicolumn, Grid, or Flexbox) or whether it represented a
fundamentally different model requiring its own abstraction. This touches upon the mental models
designers use and the philosophical coherence of CSS’s layout systems.

The most prominent debate initially revolved around CSS Grid. Proponents of integration, like Mats
Palmgren who initiated the discussion, saw Masonry as a “one-dimensional grid”** — leveraging
Grid’s powerful track definition, alignment, and placement capabilities in one axis while allowing
content to stack freely in the other. Furthermore, the ability for items to span multiple columns — a
common feature in CSS Grid and in popular JavaScript Masonry libraries®*® — was seen as a
crucial requirement. This spanning capability became a significant argument favoring Grid
integration. However, integrating Masonry into Grid raised fundamental conceptual issues. Critics
highlighted the core difference in logic: Grid establishes its structure before sizing tracks based on
content, while Masonry needs to know item dimensions during placement to find the shortest
column®,

CSS Flexbox was also considered as a potential home for Masonry due to its one-dimensional
flow, potentially simplifying the stacking behavior. However, Flexbox’s lack of handling for item
placement and its inability to span elements across “columns” were problematic and failed to cover
essential use cases. Some comments referred to Masonry as a true hybrid between Grid and
Flexbox, arguing for a new layout model on its own®’.

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 11/21

-+_Ei—_—_

.container{ .container{
display: flex; grid-template-columns: repeat(4, 1fr);
flex-direction: row; 1
flex-wrap: wrap;

3

Figure. Comparison of the different CSS layout methods. Numbers show each method’s default
flow direction.

Uniquely, CSS Multicolumn layout was briefly mentioned as visually similar, distributing content
across columns. However, it was quickly dismissed on a conceptual level. As Elika J.Etermad
clarified (issue #4650, fantasai on May 6, 2020) , Multicolumn is fundamentally about
fragmentation; breaking a continuous flow of content into columns, like text in a newspaper. It
doesn’t involve the item placement logic based on available space that defines Masonry.

This analysis revealed that no existing layout model perfectly accommodated Masonry’s unique
blend of track-based structure and dynamic stacking, particularly with the requirement for
spanning. This conceptual mismatch strengthened the argument that Masonry might require its
own layout method.

Technical Implementation Concerns

Beyond the conceptual fit, significant technical hurdles emerged, particularly concerning the
performance implications of integrating Masonry into the CSS Grid specification. Engineers from
browser vendors like Google (Chrome) and Microsoft (Edge) voiced strong concerns in long
comments™.

Attempts to reconcile this within the Grid specification led to complex algorithms with potentially
severe performance drawbacks, described by browser engineers as “quadratic” or even
“exponential” complexity. Teams from Chrome and Edge ultimately deemed the integrated
approach potentially “unshippable” due to these performance concerns and implementation
difficulties, strongly favoring a separate layout method where performance could be better
managed by tailoring constraints specifically for Masonry.

In brief, from an implementation standpoint, integrating Masonry into Grid introduces significant
code performance and architectural problems.

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 12/21

The implementation of Masonry within the Grid Module will require large chunks of
divergences in code, which helps indicate to us that Masonry makes more sense as its
own display type. (Issue #9041, comment on Apr 24, 2024, by Alison Maher /
@alisonmabher)

Considering the CSS Author Experience

The debate surrounding Masonry’s integration into CSS was also significantly influenced by
considerations of the author interface (how web developers and designers would use the feature).
The central question was whether incorporating Masonry within the existing CSS Grid specification
(display: grid) or establishing it as a new, separate layout mode (display: masonry)
would offer a more intuitive, learnable, and effective tool for creators.

This question focused on prioritizing learnability and consistency with existing CSS knowledge.
Whether we go with “masonry in grid” or “masonry as separate display type”, [...] our

decision here, which should be guided by what'’s the best interface for authors. (Issue
#9041, comment on Apr 24, 2024, by Elika J. Etemad /@fantasai)

The arguments in favor of the integration of Masonry into CSS Grid highlighted the benefits of
leveraging familiarity and reusing existing concepts. Supporting this argument, it was shown how
Masonry layout shares fundamental characteristics with Grid, such as arranging items into tracks
(columns or rows). Making it a variant of Grid would allow authors to apply their existing knowledge
of Grid properties for tasks like defining column widths (grid-template-columns) or setting
spacing between items (gap).

This reuse was seen as crucial for reducing the learning curve and maintaining conceptual
consistency within CSS. Furthermore, it offered access to Grid’s powerful features®. This argument
emphasized the practical advantage of building upon a well-known layout method, potentially
making Masonry feel like a natural extension for authors already used to CSS Grid. The goal here
is to maintain a cohesive mental model, avoiding the proliferation of different ways to achieve
similar layout goals.

Conversely, a significant counter-argument focused on the potential for confusion and increased
complexity if Masonry were merged with CSS Grid. Forcing them together under one display
property could lead to ambiguity: authors would need to constantly understand which Grid
properties apply to Masonry, which behave differently, and which are irrelevant. This could make
the combined system harder to teach, learn, and use®.

In addition, a few comments raised concerns about the long-term health of the specification.
Merging distinct layout models might necessitate complex rules and exceptions that could
potentially complicate future CSS development with odd inconsistencies®'.

Both sides of the author-interface debate aimed to provide the best possible conceptual clarity for
Web developers and designers. But they differed fundamentally on whether exploiting existing
features (integration in CSS Grid) or prioritizing conceptual separation and clarity (distinct layout
model) would best achieve that goal.

Public Debate and TAG Intervention

We observe a peak in discussion activity in April 2024, following the publication of a blog post* on
WebKit.org, the web browser engine used by Safari. The article was written by Jen Simmons, who
has since been recruited by Apple (the Safari browser vendor). In the post, she advocates for the

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 13/21

integration of Masonry into the existing CSS Grid model and includes demos of various use cases
(photos, big menu, newspaper layout, cards for a museum), along with detailed code examples
using early and experimental implementations of Masonry in Safari Technology Preview. The
article also features a section dedicated to the history of grid systems from a graphic design
perspective, including reproductions from various reference books to support her argument. Jen
Simmons concludes the article by inviting developers to join the discussion and share their
feedback with the CSSWG after trying out the demos. To facilitate this, she opened a specific issue
on the W3C repo, named #10233 Designer/developer feedback on masonry layout.

[J B work ~ @ localhost

Demos: Mega menu spaper 2un main {
display: grid;

Switch layouts: [Classic masonry | waterfall layout ¢ grid-template-columns: repeat(auto-fill, minmax(1l4rem, 1fr));
grid-template-rows: masonry;

Number items: © @ }gap: 1rem;

Hide controls

e :
Figure. Demos of Masonry layout in CSS Grid by Jen Simmons.

The same week, engineers from the Chrome and Edge teams published two lengthy comments on
issue #9041 to express their position in favor of adopting Masonry as an independent layout
method (standalone).

On the same day, on April 24, 2024, a long and detailed discussion in the IRC log posted on the
issue #9041 involved several members of the CSSWG (17 members), some of whom had not
previously participated in the debate. A preference emerged for integration into CSS Grid, with the
reasoning that the proposed syntax better aligns with the expectations of CSS authors®.

However, despite this, the debate continued for several weeks, and consensus was hard to reach.
As a result, the debate went beyond the CSSWG and became more public. In the autumn of 2024,
browser vendors and CSS experts began to engage more publicly, publishing blog posts soliciting
wider feedback from the web development community*. These blog posts played a crucial role in
translating technical debates into accessible narratives, inviting designers and developers outside
the CSS Working Group to participate.

The impact was immediate and visible on the GitHub discussion threads mentioned in various
articles. For example, issue #10233, opened by Jen Simmons following her article, received
comments from 95 different contributors. Similarly, issue #9041, cited in Chrome’s developer
article, saw 65 new comments posted between September 19 and October 5, 2024. Many of these
comments were from individuals previously uninvolved, identifying themselves as web developers,
CSS designers, accessibility experts, graphic designer and more. During these discussions, many
people expressed a preference for a solution that feels like a natural extension of Grid, rather than
an entirely new abstraction, while others requested syntax that minimized complexity, even if

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 14/21

sacrificing some flexibility. Expert CSS developers like Ahmad Shadeed® and Keith J. Grant* also
contributed with blog posts, participating in the debate outside the W3C.

As debate intensified, the W3C Technical Architecture Group (TAG) intervened. On October 14,
2024, Elika J. Etemad (Apple) and Tab Atkins-Bittner (Google), both CSS Working Group
members, formally requested an early TAG review of the Masonry specification proposals®,
accompanied by an overview of the debate. The TAG’s role is to ensure that emerging web
features align with principles of architecture and long-term consistency of the web. Their very
lengthy feedback, delivered on November 20, 2024, favored a unified set of properties across all
layout methods and pushed for deeper unification than either proposal initially offered.

Overall, we think Masonry, Grid, and wrapping Flexbox should be incorporated into a
unified set of properties. Chrome’s [New Masonry Layout] proposal splits apart
property sets too eagerly, but even the WebKit [using CSS Grid] proposal seems to
miss a chance to develop more-general properties. (...) CSS currently has 3 layout
modes (...): Grid, Multicol, and wrapping Flexbox. This is already causing a lot of
author confusion, and Masonry attempts to add a 4th mode. As a general principle,
having vastly different ways to accomplish slightly different things is a usability
antipattern. We urge the [CSS] W[orking] G[group] to explore ways to unify these so
that authors can port more knowledge from one to the other (even if they are
implemented as separate code paths internally). (Issue #1003 on wa3ctag/design-
reviews, comment on Nov 20, 2024, by Jeffrey Yasskin /@jyasskin)

Following the TAG review, discussions within the CSS Working Group shifted, starting to explore
ways to harmonize Masonry behaviors with existing layout controls, unifying grid-auto-flow
(CSS Grid) and flex-flow (CSS Flexbox) properties®. This whole idea for a unifying “ltem Flow”
layout method is still a work in progress. At the time of writing, the WebKit team from Apple has
just published a blog post explaining their reflection on this new concept®.

This process clearly illustrates the socio-political design of CSS standards. Throughout this
evolution, the Masonry debate highlights how spaces of standardization are not monolithic and are
constantly evolving. GitHub issues hosted technical exchanges, blog posts and online
demonstrations linked formal specifications to community conversations, and formal TAG reviews
focused discussions on architectural principles. Together, these spaces illustrate a distributed
discussion where design abstractions are collectively negotiated.

Conclusion

Our exploration of the Masonry layout debates has illustred the complex processes supporting the
design and evolution of CSS. By examining this specific case, we have aimed to understand CSS
not merely as a tool for web design, but as a designed object in its own right — a formal system
shaped by historical contingencies, technical constraints, and collective negotiation with
considerations for user and sustainability.

The journey of Masonry highlights that standardization within the W3C is far from a linear or purely
technical process. Rather, it manifests as a dynamic, multi-sited negotiation where technical
reasoning, conceptual modeling, practical authoring experience, and governance strategies
intersect. This process reveals the intricate ways in which a diverse range of actors — engineers,
browser vendors, standardization experts, and the wider community of graphic designers and web
developers — contribute to the ongoing construction of CSS.

Debates often arise about whether standards should primarily originate from implementations, or
be driven by designers’ needs, or be crafted by the standards body itself. However, examining the
Mansonry debate reveals that valuable contributions have emerged from all these sources®. These

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 15/21

contributions, often formulated in highly specialized technical terms, reflect the underlying
challenge: collectively developing and appropriating shared representations of graphic
design concepts within the formal constraints of code.

At the heart of this challenge are the concept of abstraction, which operates at two distinct levels in
our exploration. Firstly, designers using CSS engage in abstraction daily. They translate visual
layout into declarative rules, creating formal systems that must anticipate a variety of display
contexts and define the relational behavior of elements, rather than fixing their appearance into a
pixel-perfect way. Secondly, the very creation of CSS involves a profound act of abstraction.
Crafting the language itself — defining its rules and properties — requires anticipating potential use
cases and generalizing visual patterns into reusable, formal descriptions.

On a philosophical point of view, If we understand abstraction, in line with its Latin root abs-trahere
(to separate the essential from the detail), as closely related to generalization, then CSS
specifications can be seen as practical instantiations of theoretical ideas, generalized to
serve a broad community. Abstraction becomes the method for articulating the essence of layout
problems, delegating the specifics to the browser’s rendering logic. Ultimatly, abstraction is a tool
for design.

Finally, the case of CSS Masonry underscores how intimately the work of web design is entangled
with its material medium — the code itself. Understanding CSS as both an abstraction system and
a collaboratively constructed artifact reveals the socio-technical dynamics that shape our digital
tools. This perspective highlights the importance of designers actively participating in building their
own tools, which constitutes a form of meta-level collaboration®. The ongoing evolution of CSS
demonstrates this potential, indicating that the design community can influence its own technical
culture and practices through such engagement.

References

Ambrose, Gavin, and Paul Harris. Grids. Lausanne: AVA Academia, 2008.

Anderson, Richard J., and Sumeet Sobti. ‘The Table Layout Problem’. In Proceedings of the
Fifteenth Annual Symposium on Computational Geometry, SCG '99, New York, NY, USA:
Association for Computing Machinery, 1999, pp. 115-23. https://doi.org/10.1145/304893.304937.

Badros, Greg J., Alan Borning, Kim Marriott, and Peter Stuckey. ‘Constraint Cascading Style
Sheets for the Web’. In Proceedings of the 12th Annual ACM Symposium on User Interface
Software and Technology, UIST '99, New York, NY, USA: Association for Computing Machinery,
1999, pp. 73-82. https://doi.org/10.1145/320719.322588.

Berners-Lee, Tim. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide
Web. 1st ed. San Francisco: Harper Business, 2000.

Bos, Bert. ‘A Brief History of CSS until 2016’. w3.org, 17 December 2016.
https://www.w3.0rg/Style/CSS20/history.html.

Butler, Judith. Excitable Speech: A Politics of the Performative. New York: Routledge, 1997.

Détienne, Francoise. Software Design: Cognitive Aspects. Springer Verlag, 2001.
https://hal.inria.fr/inria-00117292.

Farge, Odile. ‘La rhétorique de la conception. Pour une conscientisation du réle de 'outil dans la
formation d’une culture numérique’. Interfaces numériques 4, no 3 (December 2017): 540-540.
https://doi.org/10.25965/interfaces-numeriques.481.

Fernandez Acebal, César. ALMcss: Separacion de estructura y presentacion en la web mediante
posicionamiento avanzado en CSS. PhD thesis, Universidad de Oviedo, 2010.

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 16/21

https://digibuo.uniovi.es/dspace/handle/10651/12715.

Grant, Keith J. ‘Resilient, Declarative, Contextual’. Https://Keithjgrant. Com/ (blog), June 2018.
https://keithjgrant.com/posts/2018/06/resilient-declarative-contextual/.

Hayles, N. Katherine. My Mother Was a Computer: Digital Subjects and Literary Texts. Chicago:
University of Chicago Press, 2005.

Korpela, J. ‘Lurching toward Babel: HTML, CSS and XML'. Computer 31, no 7 (July 1998): 103—-4.
https://doi.org/10.1109/2.689682.

Kramer, Jeff. ‘Is Abstraction the Key to Computing?” Commun. ACM 50, no 4 (April 2007): 36—42.
https://doi.org/10.1145/1232743.1232745.

Levering, Ryan, and Michal Cutler. ‘The Portrait of a Common HTML Web Page’. In Proceedings
of the 2006 ACM Symposium on Document Engineering, DocEng ‘06, New York: Association for
Computing Machinery, 2006, pp. 198—204. https://doi.org/10.1145/1166160.1166213.

Lie, Hakon, and Bert Bos. Cascading Style Sheets: Designing for the Web, Third Edition. Addison-
Wesley Professional, 2005.

Lie, Hakon Wium. ‘Cascading Style Sheets’. PhD thesis, University of Oslo, 2005.
https://www.wiumlie.no/2006/phd/.

Lie, Hakon Wium. ‘CSS and User-Adapted Web Presentations’. In Proceedings of the 2017
Conference on Conference Human Information Interaction and Retrieval, 5, CHIIR ’17, New York,
NY, USA: Association for Computing Machinery, 2017. https://doi.org/10.1145/3020165.3038294.

Loanardi, Paul M. ‘Digital Materiality ? How Artifacts without Matter, Matter’. First Monday 15, no. 6
(2010).

MacKenzie, Adrian. Cutting Code. Software and Sociality. Science, Society & Culture. Peter Lang,
2006.

Mackenzie, Adrian. ‘The Performativity of Code: Software and Cultures of Circulation’. Theory,
Culture & Society 22, no. 1 (1 February 2005): 71-92. https://doi.org/10.1177/0263276405048436.

Maurer, Luna, Edo Paulus, Jonathan Puckey, and Roel Wouters, eds. Conditional Design
Workbook. Amsterdam: Valiz, 2013.

McCullough, Malcolm. Abstracting Craft: The Practiced Digital Hand. Cambridge, Mass.: MIT
Press, 1998.

Muller-Brockmann, Josef. Grid Systems in Graphic Design: A Visual Communication Manual for
Graphic Designers, Typographers and Three Dimensional Designers. Sulgen, Suisse: Verlag
Niggli, 1981.

Nakar, Liat, and Michal Armoni. ‘Aiming Towards Abstraction: Does Algorithmic-Pattern-Oriented
Instruction Promote the Teaching of Abstraction?’ In Proceedings of the 56th ACM Technical
Symposium on Computer Science Education V. 1, 812-18. SIGCSETS 2025. New York, NY, USA:
Association for Computing Machinery, 2025. https://doi.org/10.1145/3641554.3701914.

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 17/21

10.

11.

12.

13.

14.

. Kandy, A. J. ‘A DevTools for Designers’. Medium. UX Collective (blog), 4 October 2018.

https://uxdesign.cc/a-devtools-for-designers-2342aab88c06.

. Kramer, Jeff, ‘Is Abstraction the Key to Computing?” Commun. ACM 50, no. 4, April 2007,

pp. 36—42.

We deliberately use the term designer in this paper instead of the more common terms
developer or programmer in this context, as the programming practices we are focusing on
here are primarily centered around styling with CSS and graphic design.

Nakar, Liat, and Michal Armoni, ‘Aiming Towards Abstraction: Does Algorithmic-Pattern-
Oriented Instruction Promote the Teaching of Abstraction?’ In Proceedings of the 56th ACM
Technical Symposium on Computer Science Education V. 1, 812—18. SIGCSETS 2025.
New York, NY, USA: Association for Computing Machinery, 2025. Emphasis added.

In metal type, the point size of a font describes the height of the metal body on which that
font’s characters were cast. This unit was kept with the photocomposition process.

Paul Brainerd, co-founder of Aldus Corporation and a former graphic designer in
photocomposing, explains that most of PageMaker’s interface [ancestor of desktop
publishing software] comes from his experience of collaging with a razor blade or scalpel.
See Briar Levit's documentary, ‘Graphic Means: A History of Graphic Design Production’
(2017).

Lie, H&kon Wium, ‘Cascading Style Sheets’, PhD thesis, University of Oslo, 2005. See
online: https://www.wiumlie.no/2006/phd/.

CSS includes far more capabilities than simply supporting diverse screen sizes. It
addresses a wide range of design needs, such as improving accessibility, enhancing
maintainability, ensuring device and platform independence, allowing multiple style sheets
for the same document, forward and backward compatibility, and providing flexible
rendering across different media types like print, braille, and speech. However, since layout
is the main concern in this discussion, we will primarily focus on the layout features of CSS.
For more on CSS capabilities, see the W3C CSS Design Principles:
https://www.w3.0rg/TR/CSS22/intro.html#design-principles.

“Conditional design is a design method formulated by the graphic designers Luca Maurer,
Jonathan Puckey, Roel Wouters and the artist Edo Paulus, in which conditions and rules of
play are drawn up that invite cooperation within a ‘regulated’ process towards an
unpredictable design or result.” https://conditionaldesign.org/manifesto/

Grant, Keith J, ‘Resilient, Declarative, Contextual’, Https://Keithjgrant.Com/ (blog), June
2018. https://keithjgrant.com/posts/2018/06/resilient-declarative-contextual/.

Imperative languages are usually general purpose programming languages, meaning they
can be used to program pretty much anything for a wide variety of platforms. Declarative
languages, on the other hand, are most often domain-specific languages, or DSLs,
meaning they were developed to be used for a specific purpose, within a specific domain.
CSS is a domain-specific declarative language.

See Berners-Lee, Tim, Weaving the Web: The Original Design and Ultimate Destiny of the
World Wide Web, 1st ed, San Francisco, Harper Business, 2000. On the first page of the
Web, we can read: “The WorldWideWeb (W3) is a wide-area hypermedia information
retrieval initiative aiming to give universal access to a large universe of documents”
http://info.cern.ch/hypertext/ WWW)/TheProject.html

The Web also had to work on machines without graphic interfaces, which were still very
common at the time.

Levering, Ryan, and Michal Cutler, “The Portrait of a Common HTML Web Page”, in
Proceedings of the 2006 ACM Symposium on Document Engineering, DocEng ‘06, New

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 18/21

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.
29.

York, NY, USA, Association for Computing Machinery, 2006, pp. 198-204.

Anderson, Richard J., and Sumeet Sobti, “The Table Layout Problem”, in Proceedings of
the Fifteenth Annual Symposium on Computational Geometry, SCG 99, New York, NY,
USA, Association for Computing Machinery, 1999, pp. 115-23.

Korpela, J, “Lurching toward Babel: HTML, CSS and XML”, Computer 31, no. 7, July 1998,
pp. 103—4.

Badros, Greg J., Alan Borning, Kim Marriott, and Peter Stuckey, “Constraint Cascading
Style Sheets for the Web”, in Proceedings of the 12th Annual ACM Symposium on User
Interface Software and Technology, UIST 99, New York, NY, USA, Association for
Computing Machinery, 1999, pp. 73-82.

Responsive web design is an approach to web design that ensures websites display
effectively across a wide range of devices, screen sizes, and window dimensions. It adapts
the layout of a web page to the user’s viewing environment by employing techniques such
as fluid layouts, proportion-based grids, flexible images, and CSS media queries. Ethan
Marcotte invented the term responsive web design in a May 2010 article in A List Apatrt:
https://alistapart.com/article/responsive-web-design/

Fernandez Acebal, César, ALMcss: Separacion de estructura y presentacion en la web
mediante posicionamiento avanzado en CSS, PhD thesis, Universidad de Oviedo, 2010,
p. 9.

Originally intended for wrapping text around images, the float property eventually
became a popular method for creating multi-column layouts. Aside from absolute
positioning, it was one of the few CSS mechanisms that allowed elements to be visually
positioned differently from their order in the HTML markup.

Ambrose, Gavin, and Paul Harris. Grids, Lausanne, AVA Academia, 2008.

Muller-Brockmann, Josef, Grid systems in graphic design: a visual communication manual
for graphic designers, typographers and three dimensional designers, Sulgen, Suisse,
Verlag Niggli, 1981.

“This thesis proposes a new layout mechanism for CSS, which has been developed within
the W3C Cascading Style Sheets Working Group (CSS-WG), co-authored by this author
and one of his supervisors [Bert Bos]: the CSS3 Template Layout Module.” Fernandez
Acebal, César, op. cit.

Elika J. Etemad, “Evolution of CSS Layout: 1990s to the Future”, A touch of Class [online],
10/04/2012, https://fantasai.inkedblade.net/weblog/2012/css-layout-evolution/.

The consortium was created to prevent technological fragmentation of the Web by
proposing a space for deliberation between members that could lead to a consensus on
shared standards, while preventing any single vendor from monopolising the moral and
legal ownership of these standards. See Tim Berners-Lee, Mark Fischetti, and Michael L
Dertouzos, Weaving the Web: The Original Design and Ultimate Destiny of the World Wide
Web by Its Inventor (New York: HarperCollins, 2008) , pp. 98-99.

To know more about how CSSWG works, Elika J. Etemad’s series of blog posts offers an
insightful overview with key aspects such as the people and roles involved, communication
methods, decision-making processes, modularization of specifications, and the overall
specification development workflow. Elika J. Etemad, “about:csswg, An Inside View of the
CSS Working Group at W3C”, A Touch of Class [online], 2011,
https://fantasai.inkedblade.net/weblog/2011/inside-csswg/

CSS Working Group currently has 189 participants (including 17 invited experts)
representing 35 organizations, see https://www.w3.org/groups/wg/css/participants/.

https://gitlab.com/JulieBlanc/data-from-github-issues
https://github.com/topics/waterfall-layout

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 19/21

30.

31.
32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

Tab Atkins Jr. “Re: [css-grid] Dense Packing (was: [CSSWG] Minutes Telecon
2013-07-19)”, www-style mailing-list, 19 Jul 2013,
https://lists.w3.org/Archives/Public/www-style/2013Jul/0486.html

https://codepen.io/jensimmons/full/VYNeRZw

See the css-meeting-bot log on January 23, 2020:
https://github.com/w3c/csswg-drafts/issues/4650#issuecomment-577614598

“CSS Grid Layout Module Level 3, Editor’s Draft, 22 October 2020”,
https://web.archive.org/web/20201028164253/https://drafts.csswg.org/css-grid-3/

“The proposal here is to define a ‘one-dimensional grid’, so that you have tracks in just one
axis and a continuous flow (stacking blocks one after another) in the other. So indeed, there
are no”shared row lines” anywhere in the masonry axis (except at the start edge perhaps).
It seems to me this is precisely what masonry layout is about, one axis has grid-like
properties (tracks), while the other axis has a continuous flow (in each track separately).
(Issue #4650, comment on Jan 22, 2020, by Mats Palmgren /@MatsPalmgren)

Desandro’s original masonry library is described as a “Cascading grid layout library.”

“At their most fundamental level, Grid and Masonry are opposite with respect to sizing and
placement. Grid places all items before layout, and then has complete knowledge of what
items are in any given track, so it can do complex intrinsic sizing based on that knowledge.
Masonry places items as they’re laid out, and thus it cannot know what elements will end
up in any given track, and can’t do the same complex intrinsic sizing.” (Issue #9042,
comment on Apr 24, 2024, by Tab Atkins Jr. /@tabatkins)

“To me, grid creates rows and columns (...) where Flexbox allows for more intrinsic layouts
that have no lines, but does have an axis. Masonry is a combo of both in most cases,
where columns are desired (so vertical lines) but no horizontal lines, as all items can have
their own intrinsic height. (...) Masonry shares more with Flexbox than Grid in my opinion.”
(Issue #4650, comment on Jan 21, 2020, by Adam Argyle /@argyleink)

See the comments on issue #9041, from Tab Atkins Jr. (Google) and Alison Maher
(Microsoft Edge) posted both on Apr 24, 2024.

“| believe Masonry-style layout belongs in Grid. (...) Making this part of Grid also gives
authors all the other powers of Grid — track sizing, names, etc.” (Issue #4650, comment on
Jan 23, 2020, by Jen Simmons /@jensimmons)

“It seems like we create a lot of additional complexity by making grid do a non-grid thing.
Add to that the teaching issue, it's been tricky enough to explain one-dimensional vs. two-
dimensional to authors, and encourage understanding of which layout method to use for
which use case. | think that tying Masonry, which is more like Flexbox than Grid, to Grid
layout would be ultimately very confusing.” (Issue #4650, comment on Jan 22, 2020, by
Rqchel Andrew /@rachelandrew)

“I believe this situation to be similar to that of Block and Multicol—these were folded into a
single layout mode, and ever since we’ve had to deal with odd inconsistencies between the
two in what behaviors they expect. If we had defined display: multicol back in the day, many
issues would have been avoided. | think the Grid/Masonry marriage is even more fraught
with inconsistencies”
(https://github.com/w3c/csswg-drafts/issues/9041#issuecomment-2075210820)

Jen Simmons, “Help us invent CSS Grid Level 3, aka ‘Masonry’ layout”, WebKit.org
[online], April 19, 2024,
https://webkit.org/blog/15269/help-us-invent-masonry-layouts-for-css-grid-level-3/

One extract of the discussion: “Lea [Verou]: These demos are impressive, and this is
solving real author pain points. (..) | did have some reservations about how this combines
with multicol from an author point of view, but | think I'm now convinced this makes sense
as a part of grid. (...) Miriam: Agree quite a bit with Lea. Agree we like this as part of grid.
Syntax feels right. (...) Looking at separate masonry proposal, seems like new terms for

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 20/21

44,

45.

46.

47.

48.
49.

50.

51.

similar things. Why do | need to learn new terms for the same thing? | also might want to
switch between grid and masonry at different break points. Keeping them together makes it
a lot easier to do”

Google Chrome Team (Rachel Andrew, lan Kilpatrick, Tab Atkins-Bittner), “Feedback
needed: How should we define CSS Masonry?,” September 19, 2024,
https://developer.chrome.com/blog/masonry-syntax; WebKit Team (Jen Simmons and Elika
Etemad), “Help us choose the final syntax for Masonry in CSS,” October 21, 2024,
https://webkit.org/blog/16026/css-masonry-syntax/.

“Should masonry be part of CSS grid?”, Oct 30, 2024,
https://ishadeed.com/article/css-grid-masonry/

“Weighing in on CSS Masonry”, May 2024,
https://keithjgrant.com/posts/2024/05/weighing-in-on-css-masonry/

The issue #1003 CSS Masonry Layout was opened on the GitHub TAG group by Elika J.
Etemad / @fantasai, https://github.com/w3ctag/design-reviews/issues/1003

https://github.com/w3c/csswg-drafts/issues/11480

Jen Simmons and Elika Etemad, “Introducing Item Flow: a new layout mode encompassing
grid, flexbox, and masonry,” WebKit.org [online], December 16, 2024,
https://webkit.org/blog/16082/introducing-item-flow-a-new-layout-mode-encompassing-grid-
flexbox-and-masonry/

This observation aligns with Elika J. Etemad’s work, which demonstrates a similar point for
other CSS properties. See “about:csswg, An Inside View of the CSS Working Group at
W3C”, op. cit.

We have developed this idea in another publication: Julie Blanc, “Large-scale collaboration
in graphic design communities of practice”, Our Collaborative tools, [online], 2024,
https://ourcollaborative.tools/en/article/collaboration-in-graphic-design-commun

© La revue DAM
téléchargé le 2026-01-20 15:53:39, depuis le 216.73.216.174 21/21

